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Abstract: Breast cancer is the most common cancer in women, a leading cause of morbidity and
mortality, and a significant health issue worldwide. According to the World Health Organization’s
cancer awareness recommendations, mammographic screening should be regularly performed on
middle-aged or older women to increase the chances of early cancer detection. Breast density is
widely known to be related to the risk of cancer development. The American College of Radiology
Breast Imaging Reporting and Data System categorizes mammography into four levels based on
breast density, ranging from ACR-A (least dense) to ACR-D (most dense). Computer-aided diagnostic
(CAD) systems can now detect suspicious regions in mammograms and identify abnormalities more
quickly and accurately than human readers. However, their performance is still influenced by the
tissue density level, which must be considered when designing such systems. In this paper, we
propose a novel method that uses CycleGANs to transform suspicious regions of mammograms from
ACR-B, -C, and -D levels to ACR-A level. This transformation aims to reduce the masking effect
caused by thick tissue and separate cancerous regions from surrounding tissue. Our proposed system
enhances the performance of conventional CNN-based classifiers significantly by focusing on regions
of interest that would otherwise be misidentified due to fatty masking. Extensive testing on different
types of mammograms (digital and scanned X-ray film) demonstrates the effectiveness of our system
in identifying normal, benign, and malignant regions of interest.

Keywords: breast cancer; breast mammographic density; ACR BI-RADS; CNN; deep learning; CycleGAN;
mammography; classification; computer-assisted image processing; computing methodologies

1. Introduction

Breast density is considered to be a measure of fibrous and glandular tissue existence
(also known as fibroglandular tissue) in the whole breast when compared to the fat tissue.
It has no direct relation to the breast size or its firmness. There are three basic components
of a breast: connective tissue, ducts, and lobules. The connective tissue, which is formed
of fatty and fibrous tissue, envelops and holds everything in place. Lobules are the small
glands that produce milk, while ducts are the tiny transport tubes that carry milk from the
lobules to the nipple. Together, lobules and ducts are known as glandular tissue (Figure 1).
Fibrous tissue and fat give breasts their size and shape while they also hold the rest of
the breast components in place. Most breast cancers begin in the ducts or lobules. Breast
density as a measurement is important mainly for two reasons: Women who have dense
breast tissue, present a higher risk of developing breast cancer compared to women with
less dense tissue. It is unclear until now why high density is associated with higher breast
cancer risk. This may be attributed to the fact that dense breast tissue is formed by a
bigger proportion of cells that could be evolved into abnormal under some conditions.
The absolute relationship between the risk factor of breast cancer development in women
with increasing breast mammographic density has already been reported in many relevant
studies [1].
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Figure 1. Overview of a typical breast. (Adapted from here. Original image by Patrick J. Lynch, med-
ical illustrator; C. Carl Jaffe, MD, cardiologist, is licensed under the Creative Commons Attribution
2.5 Generic license).

The second reason is that dense breast tissue (fibrous and glandular) makes it harder
for radiologists to detect cancerous regions in mammograms because it looks white or
opaque on an MRI. Breast masses and cancerous regions also share the same dominant
white characteristics as the rest of the healthy tissue, so density makes it harder for the
abnormalities to be traced by radiologists or computer assisted diagnosis (CAD) systems. In
contrast, a fatty tissue looks almost black, so it is easier to see abnormalities that have large
intensity values in a low intensity background. In screening mammography, according
to the American College of Radiology Breast Imaging Reporting and Data System (ACR
BI-RADS), there exist four different levels of density [2]. Almost entirely fatty indicates
that breasts are almost entirely composed of fat (ACR-A). Scattered areas of fibroglandular
density indicate there are some scattered areas of density, but most of the breast tissue is
non-dense (ACR-B). Heterogeneously dense indicates that there are some areas of non-
dense tissue, but most of the tissue is dense (ACR-C). Finally, extremely dense indicates
that nearly all breast tissue is dense (ACR-D).

Breast density cannot be detected through physical examination but only through
mammography, and it is an important variable that affects the sensitivity of mammog-
raphy [3–6]. Over 40% of women with dense breast tissue are characterized as heteroge-
neously dense (ACR-C) or extremely dense (ACR-D). Dense breast tissue is an independent
risk factor for the development of abnormalities and decreases the likelihood of breast
cancer being detected successfully on screening mammography, leading potentially to
delayed diagnosis, which can have detrimental results.

In order to automatically identify and categorize breast lesions in mammograms
using traditional machine learning models and to bring these results to doctors’ attention,
computer-aided detection systems (CAD) were developed in the 1990s [7–9]. Yet, due
to their low specificity, current conventional CAD systems are unable to considerably
increase screening performance. The success of these algorithms to identify and categorize
abnormalities in mammograms is related to specificity. This differs from diagnosis, which
draws conclusions about the cause of an aberration. It is crucial to find irregularities in
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mammograms, which could be caused by mistakes or tired observers. Convolutional neural
networks (CNNs) have gained popularity in recent years for a variety of image processing
classification tasks. CNN-based CAD systems have proven to be quite effective, with high
rates of breast cancer diagnosis. However, there are still some open issues in the automatic
breast cancer detection problem, one of the most important being the breast density as
already described earlier.

In the literature, the use of generative adversarial networks (GANs) for numerous
medical challenges, including data synthesis and augmentation, is constantly growing.
However, these models may experience numerous artifacts (i.e., checkerboard artifacts),
which may affect the quality of the final synthesized images, especially when working with
full-size mammograms. GANs can help in the synthesis of a variety of plausible-looking
mammography images either in full size [10–13] or in ROI-based approaches [14,15].

Due to its impact on the accurate detection of cancer in mammograms, the problem
of automatic breast tissue recognition has been extensively studied over the last decade,
with a large number of papers published in this area proposing systems that use either
traditional machine learning techniques or, more recently, deep learning networks and
architectures [4–7,13,15,16]. However, to our knowledge, none of them proposes a method
to “transform” breast density to lower density levels and thus enhance the diagnostic
accuracy of CAD systems.

Motivated by the crucial role that breast tissue density plays in the detection of breast
cancer, as it makes it more challenging for radiologists to accurately detect cancerous regions
in mammograms, we sought to investigate to what extent computer-assisted diagnosis
systems are affected by this challenge, using different types of mammograms ranging from
scanned film to fully digital images in our experiments. To address this, we propose a
novel breast tissue transformation using CycleGAN network topology that can be applied
to any region of interest (ROI) to adjust its density to match the characteristics of an ACR-A
class tissue, which is easier to diagnose successfully. CycleGAN was chosen due to its
widespread applications and accomplishments in the field of cancer imaging [16]. A crucial
methodological characteristic of CycleGAN is that it can train on unpaired data without
the need for matching image pairings in the source and target domains. As our datasets
lack image pairings and the same patient’s breast cannot belong to both the high and low
breast density domains, using unpaired training data confirmed that CycleGAN would
work with our datasets. The main contribution of our system is taking breast density into
account, and by using a CycleGAN model, transforming the density of the ROI’s tissue
to match the characteristics of an ACR-A class tissue. This process significantly improves
recognition accuracy while reducing the number of undetected ROIs due to their dense
breast tissue.

The structure of the paper is as follows: In Section 2, we give a detailed description
of the proposed CAD system. We present the different modules that it consists of and
the different datasets that were used to test the efficacy of the system. In Section 3, we
present the experimental setup and results, which are further discussed and commented
in Section 4. Finally, in Section 5, some conclusions and remarks are given concerning the
limitations and further research.

2. The Proposed System Overview

The main objectives of this work are summarized as follows:

• Development of a novel approach/method to detect hidden suspicious abnormalities
in ROIs that are partially or completely masked by surrounding tissue by taking into
account the local breast density as recognized by a CNN classifier that marks the tissue
ACR into four levels (A, B, C, D).

• Elimination of the masking effect due to the surrounding tissue on the examined ROI
by transforming the ROI’s ACR level into the A category. This procedure is achieved
using a GAN/CycleGAN topology that cycles through the ACR levels.
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• Improvement of the overall abnormal region detection performance using a CNN
network architecture based on a fine-tuned VGG16 network and extended tests on
five of the most well-known datasets in the field.

The proposed CAD system used in this work is illustrated in Figure 2. It consists of
three main modules: (a) the data preparation module where image preprocessing and data
augmentation take place, (b) the deep learning module where breast tissue segmentation,
breast density transformation, and suspicious region detection are performed, and finally,
(c) the evaluation module where annotation of abnormal regions on the given mammogram
under examination is performed. To make our system more robust and to consider the dif-
ferent types of mammograms acquired during examination (fully digital, as well as scanned
X-ray film), we thoroughly tested our system using five different datasets containing digital
and film-scanned mammograms.
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A. The VinDR-Mammo dataset (digital)

The VinDr-Mammo [17] dataset is a large-scale dataset of full-field digital mammo-
grams consisting of 5000 four-view examinations accompanied by breast-level assessments
and findings annotations. To the best of our knowledge, VinDr-Mammo is currently the
largest public dataset (containing approximately 20,000 scans) of full-field digital mammo-
grams that also provides breast-level BI-RADS assessment categorization together with
suspicious or possible benign findings that require follow-up examination as well as ACR
breast tissue/finding level annotations.

B. The SuReMaPP dataset (digital)



Signals 2023, 4 425

The SuReMaPP [18], published recently, consists of 343 mammograms that have been
hand-labeled by expert radiologists to identify suspicious regions, such as abnormalities
(benign and malignant) and calcifications. SuReMaPP contains mammograms with ACR
keyword descriptions that are corresponding to the ACR BI-RADS specification.

C. The MIAS dataset (film)

The Mammographic Image Analysis Society (MIAS) [19] dataset consists of 322 film
mammograms (106 fatty and 216 dense images). Annotations are given in a separate file
containing the background tissue type, the class and the severity of the abnormality, x
and y coordinates of the center of the irregularities, and the approximate radius of a circle
enclosing the abnormal region in pixels. For this dataset, there is no annotation for ACR
breast tissue level.

D. The DDSM dataset (film)

The digital database for screening mammography (DDSM) [20–22] is provided by the
University of South Florida. It contains film mammograms, which are digitized using four
different types of digitizers. The database contains approximately 2500 studies. Each study
includes two images (views) of each breast, as well as some associated patient information
(age at time of study, ACR breast density rating, subtlety rating for abnormalities, and
ACR keyword description of abnormalities) and image information (scanner used for the
digitization, scanner spatial resolution, etc.). The ACR keyword description of the database
was matched to the ACR BI-RADS categorization.

E. The INbreast dataset (digital)

The INbreast dataset [23] was used in the training phase of our CNN-based CAD
system (patch extraction-based approach) and as a golden standard in all our experiments.
The other datasets were used to evaluate the performance of the proposed system under
different types of acquired mammograms.

2.1. Data Preparation
2.1.1. Input Image Normalization

To eliminate the differences in the intensity levels of the mammograms used in the
databases, the histogram transfer method was applied from the INbreast dataset to all other
images. This normalization preprocessing step in CAD systems is crucial as it can account
for large intensity variations that are typically attributed to the use of different scanners
with varying parameters in the image-capturing process. These intensity variations can
also severely affect the performance of processing and analysis steps, such as image regis-
tration, segmentation, and tissue volume estimation. To ensure objective image comparison
between different mammograms, a normalization algorithm is performed in advance to
modify the distribution of intensity values of each scan and match the selected baseline
image. This preprocessing step was adopted from [24].

In order to help radiologists detect abnormalities, the adaptive histogram enhancement
(AHE) [25,26] method is typically applied as a preprocessing step in CAD systems. The
AHE method is a contrast-boosting technique that enhances local contrast and image
details. Medical images can benefit greatly from this preprocessing step, but it can also
generate a lot of noise as a side effect. To increase the image contrast and eliminate the noise
enhancement, a variation known as the contrast-limited adaptive histogram equalization
(CLAHE) technique [27–29] is used, as proposed in the literature.

2.1.2. Image/Breast Tissue Segmentation

To perform breast tissue segmentation, we estimate the tissue masks using a VGG-UNET
network. The UNET architecture was initially proposed by Ronneberger et al. [30] for
biomedical image data segmentation. We trained the VGG-UNET network using the
images from the INbreast dataset and then applied the learned model to images from other
datasets. For the segmentation step, we replaced the UNET encoder with a pre-trained
VGG16 encoder, as depicted in Figure 3. The reason for this is that the VGG16 is already
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pretrained on the ImageNet dataset, whereas the UNET encoder would have to be trained
from scratch to learn the features and the breast tissue area characteristics with significantly
lower performance. Finally, the VGG16 encoder is converted into a symmetrical UNET
architecture. We applied the constructed model to all datasets (except INbreast), to extract
the tissue regions that will be used in the following analysis steps (Figure 3).
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The training procedure was conducted using the INbreast database.

2.2. The Deep Learning Module
2.2.1. Feature Extraction/Classification

In the literature, many techniques for feature extraction have been proposed. In recent
years, deep convolutional neural networks (DCNNs) have attracted great attention due
to their outstanding performance. In image classification issues, including image analysis
as in [31,32], CNNs have been proven to be successful. A convolutional neural network
(CNN) is made up of a series of trainable stages stacked on top of one another, a supervised
classifier, and feature maps [33].

Transfer learning is used on our first model, which is based on the VGG16 architecture.
The model was pre-trained on ImageNet, and the first four blocks of residual layers were
kept frozen, except for the batch normalization (BN) layers, which required retraining to
achieve better convergence. By applying transfer learning, a model can be trained using
smaller sets of training data while still being capable of accurate predictions, mostly due to
the learned parameters from the source model (in our case the pretrained ImageNet). An
additional fully connected (FC) layer with a size of 1024 is added to the overall architecture,
followed by a dropout regularization layer to ensure generalization performance. For the
output layer, a final FC layer is added. Our model has three output classes: normal, benign,
and malignant. This model, which we will refer to as VGG16-NBM, is used to categorize
each image patch from the entire breast MRI as either normal, benign, or malignant.

A similar VGG16 model was also constructed with four outputs corresponding to the
four different categories of breast density: ACR-A, ACR-B, ACR-C, and ACR-D. Similar
approaches have also been reported in the literature that perform very well [34]. We will
refer to this model as VGG16-ACR, and its task is to recognize the density class for each
image patch.

For the training of the two VGG16-based models (VGG16-NBM and VGG16-ACR),
the INbreast database was used. The input to the VGG16 models is patches the size of
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256 × 256 pixels. To augment our training set, we exploited the capability of GAN topolo-
gies to produce artificial samples of a specific domain as presented in the following section.

2.2.2. Generative Adversarial Networks (GANs)

Recently, the idea of adversarial training has gained popularity, and deep learning
research has advanced significantly. Since their initial presentation, generative adversarial
networks (GANs) have attracted attention worldwide, and every year, even more studies
are published and presented in different research areas, especially in medical image analysis.
GANs have been used for data augmentation in several recent works [35–39], including
medical image analysis.

Generally, training on a set with a large number of samples, performs well and
gives high accuracy rates. However, biomedical datasets usually contain only a relatively
small number of samples due to the limited number of patients that can be involved
in different studies. To solve this problem, data augmentation can be used to increase
the size of the input data by generating new data from the original input data. Given
the rapid progress of generative models in synthesizing realistic images and the known
effectiveness of simple data augmentation techniques (e.g., horizontal flipping, rotation,
shifting, brightness adjustments), we have integrated two GAN models in our CAD system
to synthetically augment the extracted patches from the training database. In this way, we
can balance the class ratio of normal, benign, and malignant samples in the training set.

The first GAN (GAN-NBM) was used to produce synthetic patches from normal/benign/
malignant classes to ensure the robustness of the CNN-based classifier and variability of
the samples. The second one (GAN-ACR) was implemented to produce synthetically
augmented patches belonging to the four different tissue ACR categories. Figures 4 and 5
depict patches generated by the GAN model that belong to the specified classes. In Figure 4,
the GAN-NBM produces ROI patches from the normal, benign, and malignant classes. In
Figure 5, ROI patches representing the ACR breast density class are generated. The role of
both GANs is to augment the training dataset in an unsupervised manner. For both cases,
the INbreast annotation, which refers to the annotation of masses and microcalcifications in
mammograms, was used, imposing at least an 85% ratio of overlap with the breast tissue
mask that was estimated from the previous image segmentation step, especially for the
patches of classes ACR-A, -B, -C, and -D.
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Figure 5. Examples of artificially generated images of ACR-A, ACR-B, ACR-C, and ACR-D classes
using the GAN-ACR network. (Note that checkerboard effects and artifacts are present.)

2.2.3. CycleGANs

CycleGANs are used to train an image-to-image translation model, which does not de-
pend on paired datasets to learn the mapping between the input and the output images [40].
The key to CycleGAN’s success is the idea of an adversarial loss that forces the generated
images to be, in principle, indistinguishable from real images. In our work, we adopt the
architecture of CycleGAN as proposed by Johnson et al. [41], which has shown impressive
results for neural-style transfer and super-resolution. Formally, given a source domain X
and a target domain Y, CycleGAN aims to learn the mapping of G: X→ Y between input
and output images such that the G(X) is the translation of the image from domain X to
domain Y. Additionally, it also aims to learn a reverse mapping of F: Y→ X such that F(Y)
is the translation of the image from domain Y to domain X.

In our work, the CycleGAN model is used to transform patches from classes (domain)
ACR-B, -C, and -D to class ACR-A. The main purpose of this model is to subtract the effect
of tissue masking from the breast patches and transform their tissue into class ACR-A. The
training of the CycleGAN was performed after creating data belonging to two categories:
one containing image patches from class ACR-A and the other constructed by considering
all the remaining patches from classes ACR-B, ACR-C, and ACR-D (Figure 6).

In Figures 7 and 8, patches from the unpaired categories ACR-A, ACR-B, -C, and -D
are shown. The ROI patches in the first row of Figure 7 (belonging to classes ACR-B, ACR-C,
and ACR-D) are transformed to the corresponding class ACR-A patches in the second row
using the CycleGAN model. In Figure 8, the opposite transformation is depicted. Due to
the cycle consistency characteristic of CycleGAN, we can also transform ACR-A patches
back to the ACR-A class, thereby examining the convergence of the model (Figure 9).
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Figure 9. Consecutive ACR density transformations via CycleGAN (two times transformations of an
ACR-A ROI).

Since data from this categorization are highly unbalanced, the GAN-ACR model
described in the previous section was used to produce synthetic data up to a total of
10 million patch images. The CycleGAN was left for several epochs to run (in each epoch
the network uses a pair of 10 million image patches, which are randomly shuffled at the
end of each epoch).

In Figure 10, we present some examples of ROI patch transformations to ACR-A den-
sity class with the CycleGAN topology along with the changes in the heatmap between the
density transformations. For these cases, even after their change in density, the classification
of the patch remains unaltered. We have also noted that in a small number of cases, some
artifacts appeared in the lower right corner of the resulted patches, but they do not affect
the system’s performance in any significant way.
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Figure 10. Illustration of ACR heatmaps before and after CycleGAN transformations. ACR density
sensitivity remains almost the same.

An advantage of the utilized translation model is that consecutive applications of
density transformations of the input patches do not alter the ACR classification when the
input patch falls in the ACR-A category. In Figure 10, we depict the results of two successive
density transformations of a malignant ACR-A ROI to the ACR-A class via the CycleGAN.
It can be seen that the ROI’s density is not altered visually, while the network classifies it
again as malignant.

All experiments in this work were carried out on a Linux workstation equipped with
an NVIDIA RTX 3090 24 GB, GDDR6X. The deep learning models were all implemented
in Python 3.8, in Ubuntu 20.04, with TensorFlow 2.8 and Keras 2.8 API. The CycleGAN
model used comes from the original implementations [41]. Training time for CycleGAN
was 25,500 min/epoch for the initially constructed dataset. The model was on average
trained for 10 epochs, and the training set was gradually increased via artificially generated
images produced by the acGAN model. The augmentation of the datasets was performed
via the albumentations library.

3. Experimental Results

To evaluate the performance of the proposed CAD system for each of the previously
presented mammographic databases, we have used the precision, recall, accuracy and
F1-score metrics as follows:

Precision =
True Positive

True Positive + False Positive
, (1)



Signals 2023, 4 432

Recall =
True Positive

True Positive + False Negative
, (2)

F1 = 2× Precision×Recall
Precision+Recall ,

Accuracy =
True Positive+True Negative

Total ,
(3)

True positive (TP) represents the number of positive cases that have been correctly
classified as positive. True negative (TN) is the number of negative classes that have been
correctly classified as negative. False positive (FP) represents the number of negative classes
that have been misclassified as the positive class. False negative (FN) represents the number
of positive classes that have been misclassified as negative. Typically for each experiment,
a confusion matrix was also generated reporting the following cases.

The VinDR-Mammo dataset contains 20,000 total images, of which 988 (4.94%) are
malignant, and 5606 (28.03%) are benign. The ACR density distribution is 0.5%, 9.54%,
76.46%, and 13.5% for the four ACR classes, respectively. To compare the overall improve-
ment of the proposed CAD system, all ROI patches are classified before and after changing
their density to ACR-A using the CycleGAN network. The performance of the CNN model
based on VGG16 before and after utilizing the CycleGAN transformations is depicted in
Figure 11, which shows a significant improvement in the metrics. The recognition results
on the left of each dotted line correspond to the initial CNN performance, while the results
on the right correspond to the performance after the application of the CycleGAN density
transformations. The overall accuracy is dramatically increased from 85% to 91%.
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Figure 11. CNN performance before and after CycleGAN transformations—VinDR—Mammographic
Database.

The SuReMaPP dataset contains 343 images, with 0 (0%) malignant and 132 (38.48%)
benign cases. The results for the SuReMaPP dataset are shown in Figure 12. The overall
accuracy is further improved from 96% to 98%.
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Figure 12. CNN performance before and after CycleGAN transformations—SuReMaPP—Mammographic
Database.

The MIAS dataset contains 322 total images, with 54 (16.77%) malignant and 69 (21.43%)
benign cases. The results for the MIAS dataset are shown in Figure 13. The overall accuracy
is increased from 96% to 97%.
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Figure 13. CNN performance before and after CycleGAN transformations—MIAS—Mammographic
Database.

The DDSM (digital database for screening mammography) dataset contains 10,480 images,
with 1936 (18.7%) malignant and 2628 (25.4%) benign cases. The results for the DDSM
dataset are shown in Figure 14. The overall accuracy is dramatically improved from
67% to 79%.
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Figure 14. CNN performance before and after CycleGAN transformations—DDSM—Mammographic
Database.

For comparison reasons, we report the proposed system’s performance when using
the INbreast dataset, which was used in all the relevant CNN/GAN-based topologies
for training. The INbreast dataset contains 410 images, with 100 (24.39%) malignant,
243 (59.27%) benign, and 67 (16.34%) normal cases. The percentage of images in each ACR
category is 36%, 35%, 22%, and 7%, respectively. In Table 1, we present the evaluation of
the VGG16 classification model (normal–benign–malignant)

Table 1. CNN performance before CycleGAN—INbreast. In the first part, the confusion matrix shows
the number of misclassified patches before any transformation of the tissue density.

Benign Malignant Normal Precision Recall F1-Score Support
Benign 355,029 1035 2629 0.99 0.99 0.99 358,693

Malignant 1875 845,068 4125 1.00 0.99 0.99 851,068
Normal 1747 2109 1,134,459 0.99 1.00 1.00 1,138,315

Accuracy 0.99 2,348,076
Macro avg. 0.99 0.99 0.99 2,348,076

Weighted avg. 0.53 0.99 0.99 2,348,076

For the incorrectly classified ROI patches, after exploiting the CycleGAN model to
transform their density to ACR-A class, the classification results are shown in Table 2.

Table 2. CNN accuracy performance for the falsely recognized patches of Table 1, after CycleGAN
patches density transformation.

Benign Malignant Normal Precision Recall F1-Score Support
Benign 2690 398 576 0.59 0.73 0.66 3664

Malignant 1358 2486 2156 0.74 0.41 0.53 6000
Normal 476 472 2908 0.52 0.75 0.61 3856

Accuracy 0.60 13,520
Macro avg. 0.62 0.63 0.60 13,520
Weighted

avg. 0.59 0.73 0.66 3664
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From the above table, we see an F1-Score of 60%. Only the patches falsely classified
as normal–benign–malignant in Table 1 are processed by the CycleGAN model, which
transforms their ACR densities to ACR-A and recalculates the classification outcome. The
combination of the data in Tables 1 and 2 give a total classification accuracy for the INbreast
dataset of 99.77%.

4. Discussion

Breast tissue density is a known risk factor for cancer development, as women with
denser breasts have a higher likelihood of developing cancerous regions compared to
women with less dense tissue. However, abnormalities in the breast, whether malignant or
benign, can often be concealed by the glandular and connective tissue, making it difficult
for both radiologists and computer-assisted diagnosis systems to identify them early or
during follow-up screening. Because connective tissue, glandular tissue, and malignancies
all appear as white regions on a mammogram, cancerous regions may be hidden by healthy
tissue. Our approach considers the density of the examined region of interest (ROI) by
attempting to “uncover” and reveal what is masked by the tissue effect.

In this study, we used two types of public screening mammography datasets, film and
digital, to demonstrate the effectiveness of our proposed method. It is important to note that
our proposed reverse transformation process based on CycleGANs only operates within the
breast density mask and applies solely to those ROI patches that are incorrectly classified
by classical CNN-based CAD systems as normal, benign, or malignant. Consistent with our
experimental findings, the CycleGAN model successfully learned to translate ROI breast
density from low to high (and vice versa) while preserving all domain features necessary
for accurate type classification.

In the film mammography datasets (MIAS, DDSM), the accuracy improvement is up
to 12%, which can be attributed to the CycleGAN model’s ACR reverse transformation
process acting as an image enhancement step. However, the image quality of these datasets
is inferior to that of fully digital ones (VinDR, SuReMaPP, INbreast), where the accuracy im-
provement is up to 6% at most, as these mammograms have better quality with no extreme
intensity variations. When dealing with datasets acquired with equipment variations in
hardware and time, the histogram transfer technique produces a good common reference
and makes film mammography usable in mixed CNN-based solutions.

Although CycleGANs often introduce artifacts in the output images (as seen in the
lower right corner of patches in Figures 7 and 10), this behavior is expected and does
not affect the validity of the artificial patches. These artifacts can be resolved with longer
training epochs and more unpaired patch samples. In this work, we used 18K total unpaired
ACR class patches (9K from class ACR-A, and 9K from classes ACR-B, -C, and -D, both real
and artificial ones produced by the acGAN model), which took approximately six months
on an RTX 3090/24 GB-based system for producing valid ACR class patches. The ACR
heatmaps demonstrate that the transformed patches’ density changes do not affect the
patch’s classification into the appropriate ACR class, providing macroscopic evidence of
the process’s ground truth.

We did not optimize the CNNs/GAN topologies in terms of hyperparameters, but we
attempted to keep our system’s design relatively simple while enhancing its accuracy per-
formance. More sophisticated and precise models can be deployed. Furthermore, our task,
which involves transforming the ACR density of the examined ROI to reveal underlying
findings, works particularly well for ACR density classes B and C, which account for 80%
of all female breast cancer cases. For ACR-A, the density transformation back to the same
class A contributes very little, as expected. Similarly, findings in class D density ROIs are
much harder to identify, and the density transformation process should be augmented by
extra information (such as BI-RAD characterization) for better diagnostic outcomes.
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5. Conclusions

Our study presents a new computer-aided diagnosis (CAD) system for breast cancer
that can classify suspicious regions of mammograms into three categories: normal, benign,
and malignant. Our aim is to improve the accuracy of this classification by taking into
account the density of the patient’s breast tissue. Dense breasts are more likely to have
invasive ductal carcinoma due to the increased amount of glandular tissue, which can
make it harder to detect abnormalities. Our proposed CAD system solves the problem of
“masking” in mammograms, where dense breast tissue can hide abnormalities. We achieve
this by using a process that reverses the effects of breast density on mammograms.

As we hypothesized, the CycleGAN models not only learned how to translate from
low-to-high breast density but also preserved the domain characteristics during translation.
However, the present study is not without limitations. One limitation of our work involves
the availability of healthy ACR-D mammograms to train the generative models. There are
not many annotated datasets publicly available that are fully digital, so one must resort to
a closed set of mammograms. Another limitation is the imbalanced nature of the problem;
the ratio between the different ACR classes is by no means equally distributed. In our
approach, this was partially resolved by using image manipulation methods (i.e., GANs)
that produced artificially patched images via domain adaptation. However, it is known
that this process does not extend the feature space of the problem but rather produces
structurally similar images, which, in many cases, result in overfitting. Although the
sophisticated mathematics underlying deep learning training algorithms is conceptually
understandable, their architectures are more of a “black box” paradigm. In the case of
the breast density CycleGAN, one must comprehend the learned mapping via post hoc
explainability [42]. The post hoc explanation is a task that will be performed in future work.
We also plan to conduct further testing of our proposed system using real clinical images
and interpret the transformations performed by the CycleGAN with the assistance of a
team of radiologists.

Although more data are needed to fully examine the extent of this reverse process,
in all datasets that we tested, the overall percentage of successful recognition for nor-
mal/benign/malignant ROIs was improved significantly. In future work, we plan to
expand this method to the whole breast region, by using more advanced GANs and CNNs
that can analyze the relationships between neighboring areas. Our approach could help
doctors and radiologists identify suspicious regions and plan treatments at an early stage,
potentially avoiding consequences and treatment difficulties.
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